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Quantum semantics of text 
perception
Ilya A. Surov1, E. Semenenko1, A. V. Platonov1, I. A. Bessmertny1, F. Galofaro2, Z. Toffano3, 
A. Yu. Khrennikov4* & A. P. Alodjants1

The paper presents quantum model of subjective text perception based on binary cognitive 
distinctions corresponding to words of natural language. The result of perception is quantum cognitive 
state represented by vector in the qubit Hilbert space. Complex-valued structure of the quantum state 
space extends the standard vector-based approach to semantics, allowing to account for subjective 
dimension of human perception in which the result is constrained, but not fully predetermined by 
input information. In the case of two distinctions, the perception model generates a two-qubit state, 
entanglement of which quantifies semantic connection between the corresponding words. This two-
distinction perception case is realized in the algorithm for detection and measurement of semantic 
connectivity between pairs of words. The algorithm is experimentally tested with positive results. The 
developed approach to cognitive modeling unifies neurophysiological, linguistic, and psychological 
descriptions in a mathematical and conceptual structure of quantum theory, extending horizons of 
machine intelligence.

Volumes of textual data, piling beyond capacity of human cognition, motivate development of automated meth-
ods extracting relevant information from corpuses of unstructured texts. As ensuring relevance requires prog-
nosis of the user’s judgment, effective algorithms are bound, in some form, to simulate human-kind linguistic 
practice. This is an unsolved challenge, complexity of which was recognized long before computer age1–4. Now, 
with reading and writing texts turned into a massive and influencing part of creative human behavior, the prob-
lem is brought to the forefront of information technologies. Harnessing of human language skills is expected to 
bring machine intelligence to a new level of capability5–7.

As integral part of human cognition, natural language invites correspondingly integral modeling approach8–13. 
This is what we describe in this work. Our method of modeling, based on quantum-theoretic conceptual and 
mathematical structure, is common for various kinds of behavior including natural language14.

Quantum‑inspired cognitive modeling.  Quantum theory reflects intrinsically uncertain, subjectively-
contextual logic of human decision making allowing it to capture inherently human aspects of cognition and 
behavior such as individual unpredictability, associative irrational logic and cognition fallacies, emergent col-
lective behaviors and others14–17. Complex nature of these phenomena makes them problematic to account 
with classical reductionist approach. Still, rational models of human choice developed in the era of mechanistic 
worldview hold as important limiting cases of individual and collective behavior18.

In general, probabilistic regularities of human behavior do not fit in a single-context Kolmogorovian prob-
ability space19,20; their description requires multi-context probability measure supplemented by transition rules 
between different contexts. Such measure is provided by quantum theory where the required contextual prob-
ability calculus is based on the notion of quantum state21–25. This allows to account for contextual cognitive and 
behavioral phenomena by simple and quantitative models reviewed in15,26,27.

Advantage of quantum theory in language modeling.  In natural language, quantum-like properties 
of human decision making manifest most clearly. By design, words of natural language are multifunctional, so 
that frequently used words, e.g. pad, have wide distributions of potential meanings28; only accommodation in 
a particular textual environment narrows this distribution to some extent. Still, a reader or listener puts it to 
his or her personal context that can alter the intended meaning dramatically29,30. For decades, principles of this 
sense-making process were addressed by traditional linguistics mostly by qualitative explanatory models1,4,31,32, 
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cf.33; the modern practice-oriented paradigm shift was demanded by information technologies industry near the 
turn of the century34–36.

Quantum theory allows to describe semantic function of language quantitatively. In short, semantic fields of 
words are represented by superposition potentiality states, actualizing into concrete meanings during interaction 
with particular contexts. Creative aspect of this subjectively-contextual process is a central feature of quantum-
type phenomena, first observed in microscopic physical processes37,38.

Deep similarity between quantum physical processes and cognitive practice of humans is a fundamental 
advantage of quantum approach in natural language modeling. This similarity allows to use quantum theory to 
reason sensibly about vector-space representation of semantics and probabilistic nature of observable textual 
events; crucially, this quantum-theoretic conceptual structure is expressed in strict mathematical framework 
allowing direct connection with measurable quantities15, ch.7. In accord, this makes a powerful navigator in 
space of behavioral and linguistic models as discussed in more detail in “Discussion” section.

Quantum approach to information retrieval.  Quantitative models of natural language are applied in informa-
tion retrieval industry as methods for meaning-based processing of textual data. As shown above, quantum 
modeling approach has unique advantage in addressing this challenge.

Quantum models, essentially, extend a standard vector representation of language semantics to a broader 
class of objects used by quantum theory to represent states of physical systems39. This allows to build explicit 
and compact cognitive-semantic representations of user’s interest, documents, and queries, subject to simple 
familiarity measures generalizing usual vector-to-vector cosine distance. The result is more precise estimation 
of subjective relevance judgments leading to better composition of search result pages40–43.

This paper.  Despite many promising results, quantum approach to human cognition and language mod-
eling is still in a formation stage. A number of quantum-theoretic concepts and features stay unused, including 
complex-valued calculus of state representations, entanglement of multipartite systems, and methods for their 
analysis. Full employment of these notions in methods of machine text analysis is expected to start new genera-
tion of meaning-based information science44.

This paper addresses the above challenge by a model embracing both components just mentioned, namely 
complex-valued calculus of state representations and entanglement of quantum states. A conceptual basis nec-
essary to this end is presented in “Neural basis of quantum cognitive modeling” section. This includes deeper 
grounding of quantum modeling approach in neurophysiology of human decision making proposed in45,46, and 
specific method for construction of the quantum state space. “Single-concept perception”, “Two-concept percep-
tion”, “Entanglement measure of semantic connection” sections describe a model of subjective text perception 
and semantic relation between the resulting cognitive entities.

In “Experimental testing” section the model is approbated in its ability to simulate human judgment of seman-
tic connection between words of natural language. Positive results obtained on a limited corpus of documents 
indicate potential of the developed theory for semantic analysis of natural language.

Results
Neural basis of quantum cognitive modeling.  Cognitive‑physiological parallelism.  In physical terms, 
control of the living system’s behavior is understood as electrochemical process occurring in an individual’s 
nervous system including ∼100 billion neuron cells interacting with each other via action potentials47. After 
initial formation by receptor cells, action potentials are transmitted through multilevel neuronal chains to the 
central nervous system and the brain where their transformation is observed by variety of physical means48–50. 
Resulting electrochemical excitations are transferred to the organism’s behavioral facilities by descending neural 
pathways.

Same phenomena can be described in information terms such that action potentials are considered as signals 
linking binary neural registers while total activity of the nervous system is referred to as psyche, cognition or 
mind51,52. In traditional psychology, activity of the mind is described verbally as dynamics of ideas, thoughts, 
motives, emotions, etc.36,53. Output of this dynamics controls observable behavior of an individual.

According to psycho-physiological parallelism54, modern cognitive science builds on fusion of physical and 
information descriptions outlined above, constituting complementary sides of the same phenomena55–63. In this 
approach, firing frequency of distributed ensembles of neurons functions as a code of cognitive algorithms and 
signals64,65. Detailed correspondence between these cognitive and physiological perspectives is established by 
dual-network representation of cognitive entities and neural patterns that encode them59,66,67.

Relation to quantum structure.  The key provision of quantum modeling is that cognitive information is repre-
sented in discrete, i.e. quantized code. This is illustrated by all-or-none operation of a neuron cell: whereas the 
membrane’s voltage can take any value across continuous range, the meaningful signal, propagated further by 
action potential, is whether this voltage surpassed a certain discrete threshold or not47. On large scale, the dis-
crete format is the only option meeting fundamental requirements of cognitive performance; in the alternative 
of continuous versus discrete encoding, only the latter allows for reliable transmission, storage and retrieval of 
information in the brain68.

In simplest discrete encoding, elementary units of cognition such as ideas, thoughts and decisions referred to 
as cogs67 are either active (1) or passive (0); in agreement with the neuro-cognitive correspondence these codes 
are associated with excited and quiet states of particular functional group of neurons69 realizing the cog. Proba-
bilistic regularities of taking these (eigen)states in various potential contexts is an object of quantum modeling 
where alternatives 0 and 1 represent alternative states of a binary observable45,70.
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Likelihood of activation of the considered cog in a particular situation is conditioned by its interaction with 
the rest of the cognitive system that in turn interacts with external world labeled in Fig. 1 as <<environment>> . 
Everything except the observed cog constitutes a set of experimental conditions called context71, so that delinea-
tion between the cog and this context represents a Heizenberg’s cut between the actualized conditions (classical 
side) and not yet actualized, i.e. potential state of the considered observable (quantum side)72.

Due to enormous number of uncontrolled degrees of freedom in the context (down to vacuum fluctuations 
of physical fields73, ch. 14), activation of the considered cog and the resulting cognitive-behavioral activity is 
fundamentally nondeterministic74. Corresponding probabilistic regularity is represented by potentiality state |�� 
as indicated in the Fig. 1. Observable judgment or decision making records transition of a cognitive-behavioral 
system from state |�� to a new state corresponding to the option actualized. (Since initially undefined observable 
and its context are parts of the same cognitive system, this transition is referred to as self-measurement. This sim-
plest scheme is generalized to indirect and soft self-measurements by theory of quantum mental instruments27,75).

In this way, quantum approach allows to consider simple units of cognition while circumventing detailed 
description of the human’s mind and brain. At this level of modeling, numerous intricacies of human cognition 
are hidden, but continue to affect observable behavior (cf.76). Further sections illustrate this modeling approach 
on the process of subjective text perception.

Semantic‑conceptual distinctions as cognitive basis.  In our model, cognition of a subject is based on a set of 
linguistically expressed concepts, e.g. apple, face, sky, functioning as high-level cognitive units organizing 
perceptions, memory and reasoning of humans77,78. As stated above, these units exemplify cogs encoded by dis-
tributed neuronal ensembles66. Since the number of even single-word concepts in cognition of adult human is 
very large, each concept is passive most of the time, but may be activated by internal or external stimuli acquired 
e.g. from verbal or visual channels. This paper considers a particular class of such stimuli which are texts in 
natural language.

Composition of individual cognitive-conceptual structure is not fixed. Learning a concept apple, for exam-
ple, amounts to configuring a specialized neuronal pattern that is reliably activated by appropriate complexes 
of visual, touch, taste, and smell signals79 and properly connected to other concepts80. This cognitive instru-
ment allows an individual to distinguish apples from the background and use them at his or her discretion; this 
makes corresponding sensual information useful, i.e. meaningful for a subject81–84. Registry of such meaning-
ful, or semantic, distinctions, usually expressed in natural language, constitutes a basis for cognition of living 
systems85,86. Alternatives of each semantic distinction correspond to the alternative (eigen)states of the corre-
sponding basis observables in quantum modeling introduced above.

Single‑concept perception.  Consider a single cognitive concept X in cognition of a subject, so that per-
ception of a given text has potential to activate it (1) or not (0). Following45,46 we model this potentiality by two-
dimensional vector

called qubit, where basis vectors |1x� and |0x� stand for potential outcomes of text perception that are active 
and passive states of a concept X, and ci are complex-valued amplitudes87. Probabilities with which alternative 
outcomes realize in potential perception experiment are defined as

Thus normalized vector (1) is a cognitive state representing the considered text relative to the concept X 
in cognition of a subject. In the process of perception, subjective cognitive basis |0x� and |1x� is analogous to 

(1)|ψx� = c0|0x� + c1|1x�

(2)pi = |�ix|ψx�|2 = |ci|2, p0 + p1 = |c0|2 + |c1|2 = 1.

Figure 1.   Quantum scheme of neuro-cognitive modeling. Cognitive and physiological terminologies reflect 
quantum-theoretic concepts (bold) in parallel way. In quantum approach, a cognitive-behavioral system is 
considered as a black box in relation to a potential alternative 0/1. Department of the black box responsible for 
the resolution of this alternative is observable, delineated from the context analogous to the Heienberg’s cut 
between the system and the apparatus in quantum physics. Relative to the dichotomic alternative 0/1, potential 
outcomes of the experiment are encoded by superposition vector state |�� (1). If the experiment is performed, 
the system transfers to one of the superposed potential outcomes according to probabilities pi.
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measurement basis in quantum experiments, e.g. orientation of the magnets in the Stern-Gerlach experiment88. 
As in physics, superposition state refers to possible outcomes of the experiment which is not yet performed89,90. 
As in physics, cognitive superposition does not mean simultaneous coexistence of excited and quiet neural 
states realized by some sort of quantum magic91; rather, it accounts for a potential of transfer to new cognitive 
eigenstates in case the cognitive basis would be changed in a particular way72,92. (In our understanding, this 
parallel with physics is not yet complete since each mathematically possible transformation of basis {|0x�, |1x�} 
to some other {|0x′ �, |1x′ �} in cognitive case implies existence of linguistically expressed concept x′ together with 
the corresponding neuronal pattern, identifying of which is not obvious.)

Complex-valued amplitudes ci can be written in polar form

Phase factors eiφi generalize real-valued Euclidean vector space traditionally used for semantic modeling78,93–95 
to complex-valued Hilbert space of quantum states (1). Phases φi do not enter probabilities (2) and therefore 
cannot be inferred from pi ; instead, values φi account for probabilities of different potential decisions related to 
{|0�x , |1�x} by basis rotation. This allows quantum theory to account for subjectively-contextual nature of human 
cognition analogous to interference phenomena of wave physics14,15. As described in “Entanglement measure of 
semantic connection” section, in this work we report a novel use of the quantum phase parameters addressing 
semantic relation between a pair of qubit perception states of type (1).

Quantum semantic coherence.  Preserving physical systems in superposition states (1) requires protection of the 
observable from interaction with the environment that would actualize one of the superposed potential states96. 
Similarly, preserving cognitive superposition means refraining from judgments or decisions demanding resolu-
tion of the considered alternative.

Cognitive coherence is necessary for adequate perception of indivisible blocks of sensory information con-
stituting the essence of psychological gestalt97–100. Consider e.g. an instruction Disassemble the device 
after disconnecting it from the power outlet, semantics of which is to be evaluated for 
sentence as a whole. Relative to the observable decision << do / not do>> , this requires holding the superposi-
tion state coherent until the end of the sentence (at least). Alternative strategy could be to collapse cognitive 
coherence after each, say, three words, followed by Bayesian update of judgment or decision probability, cf.101. 
This strategy, producing incorrect evaluation of semantics and correspondingly inadequate action, should be 
suppressed by natural selection in favor of quantum-like cognitive mechanics described above.

Two‑concept perception.  In the following we focus on the case when text perception is based on two cog-
nitive concepts labeled by words A and B; as shown in “Discussion” section, this seemingly unnatural situation 
is of direct practical interest. Distinctions |1a�, |0a�, |1b�, |0b� generated by concepts A and B divide the semantic 
space into four orthogonal subspaces explicated in Table 1. Analogous to the single-concept case (1), joint cogni-
tive potentiality of two considered concepts is represented by two-qubit state

where complex-valued amplitudes are expanded as

Analogous to single-concept case (3), pij are probabilities with which four combinations of two binary dis-
tinctions encoded by words A, B and corresponding neuronal patterns would be activated in potential text 
perception experiment (Table 1).

Calculation of probabilities.  Whatever number of cognitive distinctions is used by subject, amplitudes ci in (1) 
or cij in (4) are to be determined during the text perception. For the two-concept case, we model this process by 
the following algorithm visualized in Fig. 2: 

1.	 Identify set of words Ow which co-occur with word w ∈ {A,B} in the same sentence of the text;

(3)ci =
√
pie

iφi .

(4)|�ab� = c00|00� + c01|01� + c10|10� + c11|11�,

(5)cij =
√

pije
iφij ,

∑

ij

pij =
∑

ij

∣

∣cij
∣

∣

2 = 1.

Table 1.   Two-dimensional Hilbert space of semantic categories defining text perception based on concepts A 
and B.

Concept activity state Subspace of semantic Hilbert space

Both concepts A and B are active |1a� ⊗ |1b� = |11�
Concept A is active and concept B is passive |1a� ⊗ |0b� = |10�
Concept A is passive and concept B is active |0a� ⊗ |1b� = |01�
Both concepts A and B are passive |0a� ⊗ |0b� = |00�
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2.	 Classify sentences of the text in 4 categories corresponding to basis vectors of the semantic Hilbert space 
listed in Table 1 by presence of members of Ow . For example, sentence is assigned to class |01� iff it contains 
no words from set OA and any number of words from set OB;

3.	 For each i, j ∈ {0, 1} set pij = Nij/N , where Nij is the number of sentences in each category and N =
∑

Nij 
is total number of sentences in text.

The logic behind this algorithm is that sentences are treated as identically prepared instances of the text 
analyzed by subject, so that statistics of N recognition experiments is used to define amplitudes of state (4). This 
definition of amplitudes is by no means the only possible; it is chosen due to its sufficiency for the proof-of-prin-
ciple demonstration pursued in this paper. For example, in the approach developed by Galofaro et al. semantic 
dimensions are extracted from the word co-occurrence matrix of the considered text, which allows to construct 
four-dimensional state of the form (4) reflecting interpretable semantics relations between the basis words102.

The above algorithm specifies only absolute values of the amplitudes cij , leaving their phase factors φij unde-
fined. This reflects intrinsically subjective nature of meaning-making perception process, result of which is not 
predefined by input information, but equally depends on semantic regularities of the considered perception 
system. This is further discussed in “Experimental testing” and “Discussion” sections.

Entanglement measure of semantic connection.  If the considered text is random word sample ran-
domly divided to sentences by dots, then occurrences of any two words A and B in sentences are independent 
random variables so that

for any algorithm of sentence categorization. In the case of real-valued amplitudes, pure state (4) then reduces 
to a product of two factors

where

and single qubit states |ψa� and |ψb� represent marginal cognitive models of text perceived through isolated 
conceptual distinctions A and B.

Impossibility of factorization (7) known as entanglement103 is a property of a compound state (4) in which 
subsystems have potential for coordinated resolution of uncertainties. Quantum entanglement between cognitive 
subspaces |00� , |01� , |10� , |11� in (4) models semantic connection between concepts A and B as subjectively estab-
lished by an individual recognizing the text. So defined semantic connection is ubiquitous in human cognition, 
where holistic entities are described not by individual signs but by compositions thereof31,80; description of this 
phenomenon in terms of quantum entanglement shows significant explanatory power104–108.

(6)
N01

N00

= N11

N10

,

(7)|�� =(a0|0a� + a1|1a�)⊗ (b0|0b� + b1|1b�) = |ψa� ⊗ |ψb�,

a20 =
N00 + N01

N
, a21 =

N10 + N11

N
, b20 =

N00 + N10

N
, b21 =

N01 + N11

N

Figure 2.   Text perception model: construction of the quantum cognitive state from the text substrate. Source 
document with sentences delimited by black squares (a) is perceived through binary distinctions expressed by 
concepts A and B. Presence of words associated with A and B (identified with neighboring sets, see Calculation 
of amplitudes) marked by red and blue (b) categorizes sentences to semantic subspaces defined by distinction 
states (Table 1). Number of sentences in each category defines absolute values of the amplitudes |cij| =

√
pij  

in cognitive state |�� (4). The model is finalized by supplementing the amplitudes with phase factors eiφij 
representing subjective dimension of text perception (c).
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Concurrence.  The amount of entanglement present in the pure two-qubit state (4) is quantified by deviation 
from factorization condition (7). In quantum information science, the corresponding measure called concur-
rence is defined as

where σ̂y are Pauli Y operators acting in single qubit subspaces A, B and * is complex conjugation109. Using 
pij = Nij/N as described in “Two-concept perception” section, polar expansion of amplitudes cij (5)

transforms expression (8) to

Quantity (10) is computable from the number of sentences Nij in four semantic categories and a single four-
phase difference � . In the following, we use this latter inherently quantum-theoretical degree of freedom as a 
fitting parameter allowing to tune concurrence value for given count statistics Nij . This feature reflects subjec-
tive aspect of text perception that is orthogonal to the objective count statistics of word’s co-occurrence in text.

Averaging over � nullifies the second summand under root in (10), making the resulting expression similar 
to the phi coefficient (mean square contingency)

measuring classical correlation between the two binary variables, i.e. correlation of co-occurrence of words A, B 
in the document’s sentences110. Numerator of expression (11), quantifying deviation of count statistics from clas-
sical factorization condition (6), can be obtained by replacement of amplitudes cij in (8) by the corresponding 
probabilities (4). By additional phase dimensions φij , concurrence measure (8) generalizes classical correlation 
(11) to the quantum domain.

Concurrence value (10) defines maximal violation of Bell’s inequality also used to detect entanglement of 
two-qubit state (4) in quantum physics and informatics87,111. This relates the model of perception semantics 
developed in this paper with Bell-based methods for quantification of quantum-like contextuality and semantics 
in cognition and behavior106,107,112,113. Concurrence entanglement measure of the two-qubit cognitive state can 
be compared with quantification of semantic connection by Bell-like inequality introduced in114. Use of different 
Pauli operators in (8) may account for distinction between classical and quantum-like aspects of semantics102.

Experimental testing.  The semantics-detection method described in “Entanglement measure of semantic 
connection” section was tested for a pair of concepts A=website and B=promotion for probe documents 
listed in Table 2. Documents were estimated by 8 experts according to how well they answer a question “What 
is website promotion?”. Means of the obtained grades for each document is shown in the first column of Table 2. 
Standard deviation of expert’s grades for each document averaged for all documents is 1.6.

For each document, the perception model (4) was built and used to calculate the concurrence measure (10) 
that is plotted versus expert’s estimation in Fig. 3, left panel. In cases when factor 

√
N01N10N00N11 before cos� 

is nonzero (documents 1,2,3,5,6,8,12), phase � allows to tune the concurrence value in the limits shown by 
gray bands; the phase-randomized values are shown by gray dots (data are given in Table 2). Phase � was set to 
minimize deviation of concurrence from the expert’s rank measured by determination coefficient R2 of linear 
regression110; the resulting concurrence values are shown in the left panel of Fig. 3 by black dots. Starting from 
phase-randomized values (gray dots), this optimization increased R2 from 0.54 to 0.81.

Remaining panels of Fig. 3 show alternative measures of semantic relation. Right bottom panels are classi-
cal binary correlation (11) and LSA cosine distance between words A and B (Methods) plotted versus the same 
expert’s estimation as the main panel. Corresponding determination coefficients 0.46 and 0.54 are inferior to the 
optimized quantum model. Top right panel of Fig. 3 shows ranking of the probe documents by Google search 
engine in response to query website promotion, used as estimator of semantic relation between the query 
words (Methods). The obtained determination coefficient R2 = 0.79 is slightly inferior to that demonstrated by 
the optimized concurrence measure. Similar results are obtained for Russian language.

Discussion
The question of quantumness.  Modeling of natural language, quantum and otherwise, aims to under-
stand human language practice usually by reproducing it in machine-friendly algorithmic form. In contrast 
to cryptographical and computation algorithms of quantum information science, these algorithms are mostly 
designed for ordinary classical computers. <<Quantumness>> of such algorithms is then usually cast to ques-
tion. If the result of modeling is expressible in standard programming language, is there any significant reason 
to call such model quantum?

(8)Q =
∣

∣��ab|σ̂y ⊗ σ̂y
∣

∣�∗
ab

〉∣

∣ = 2|c01c10 − c00c11|, 0 ≤ Q ≤ 1.

(9)cij =
√

Nij

N
eiφij

(10)

Q = 2

∣

∣

∣

∣

√
N01N10

N
ei(φ01+φ10) −

√
N00N11

N
ei(φ00+φ11)

∣

∣

∣

∣

= 2

√

N01N10 + N00N11

N2
− 2

√
N01N10N00N11

N2
cos�,

� = φ01 + φ10 − φ00 − φ11.

(11)C = N00N11 − N10N01√
(N00 + N01)(N10 + N11)(N00 + N10)(N01 + N11)

, −1 ≤ C ≤ 1
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Figure 3.   Left: semantic connection between concepts website and promotion quantified by concurrence 
entanglement measure (10) versus expert estimation of how well text answers the question <<What is website 
promotion?>> for 15 probe documents. Gray bars show range of concurrence values accessible by tuning of 
quantum phases φij in perception model of each document. Compared to the phase-randomized concurrence 
(gray circles), phase-tuned values (black dots) increase R2 from 0.54 to 0.81. Top right: ranking of the probe 
documents by Google search for the query website promotion. Bottom right: classical correlation 
(11) and the LSA cosine distance between the same concepts (Methods). R2 are determination coefficients. 
Horizontal axis, data and statistical error bars are common for all panels except three documents for which 
classical correlation is undefined. All data are given in Table 2.

Table 2.   Results of testing the quantum model of semantic connection between concepts website and 
promotion for 15 probe documents. Documents are listed in order of their mean ranking by experts 
according to how well they answer the question <<What is website promotion?>> (column 1). Column 
2 shows value of concurrence measure of semantic entanglement (10) between words website and 
promotion, randomized in � ; for those documents where factor 

√
N01N10N00N11 is nonzero, upper and 

lower bounds are shown. Columns 3–5 contain classical correlation (11), Google rank in response to the query 
website promotion and LSA cosine distance between the same words in 12 dimensions.

Expert estimation Quantum entanglement (10) Classical correlation (11) Google rank LSA cosine distance Document

9.5 0.36
+0.10

−0.15
0.43 3 0.96 How to promote your website online (for free!)

9.1 0.27
+0.03

−0.04
0.42 1 0.99 How to promote your website: tips for digital domina-

tion

8.3 0.17
+0.07

−0.16
0.25 7 0.93 How to promote your blog

7.3 0.14 0.12 2 0.99 7 Best techniques to promote your website for free

6.6 0.19
+0.07

−0.12
0.32 5 0.95 33 Creative ways to promote your app for free

6.5 0.34
+0.14

−0.32
0.31 4 0.84 Content promotion: how to balance organic results with 

paid ads

6.4 0.23 0.20 9 0.56 10 Social-media marketing strategies for companies

5.8 0.085
+0.04

−0.08
0.26 8 0.68 The 11 golden rules of writing content for your website

5.6 0.04 0.04 6 0.52 Promotion (marketing) (Wikipedia article)

4.8 0 - 10 0 6 Free analytics tools to help you understand your 
competitor’s web traffic

4.4 0.07 0.38 14 0.83 27 of the best website designs to inspire you in 2020

4.1 0.23
+0.09

−0.21
0.23 12 0.76 Internet branding (Wikipedia article)

3.9 0 – 11 0 How to start your own brand from scratch in 7 steps

3 0.02 0.05 13 0.51 Website (Wikipedia article)

1.9 0 – 15 0 The new age of content Darwinism (and how to apply 
it)
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The answer to this question becomes evident by observing that encountering an effective model or algorithm 
by blind search is practically impossible. The space of possibilities is so enormous that finding a good solution 
requires general reason about where to look, what may work, and what surely can’t. For example, the neural 
network paradigm is obviously based on the brain’s working, while the very representation of information 
in binary code reflects Boolean logic observed in inert macroscopic processes. Similarly, ideas for modeling 
of non-deterministic phenomena can be borrowed from quantum theory that guides thought and suggests 
instruments. The resulting models of human behavior are quantum in the same way as ordinary computing is 
classic-mechanical and neural networks are biological in their origin. The term <<quantum>> is retained, e.g., 
in the title of this paper as indication of its parent conceptual structure differing from the mainstream research.

Quantum neuro‑cognitive modeling.  The modeling approach described above simulates conceptual 
human cognition responsible for language practice and decision making. It represents high-level counterpart of 
the neural-network models emulating human cognition on the level of individual brain cells115,116. Correspond-
ence between these two approaches would allow for neural networks with interpretable internal operation, cf.117–

119. This, in turn, is a way to build antropomorphic computational systems able of strong semantic computing 
– <<systems that know what is going on>> and <<what they are doing>>120,121. Quantum approach to design 
of human-like semantic perception, the necessary part of such systems122,123, is illustrated by the model above.

Cognitive states formed in the process of perception of text are fully compatible with quantum theoretic 
analysis methods. In this way, concurrence measure of quantum entanglement is imported from quantum theory 
to the cognitive domain for free. The resulting model quantifies subjective familiarity between cognitive enti-
ties that is an essential in knowledge systems36,124. In texts, it allows to extract and quantify meaning relations 
between concepts, requested for semantic analysis of natural language data125–127. Simplicity and interpretability 
of the model, in accord with the positive results reported above, exemplifies advantage of quantum approach to 
cognitive modeling discussed in the beginning of this section.

Relation to QBism.  Principles of quantum neuro-cognitive modeling developed in “Neural basis of quan-
tum cognitive modeling” section complement subjective interpretation of quantum theory (QBism) in which 
quantum theory constitutes a personalized instrument for probabilistic prognosis of individual experience128–130. 
Even though the latter is intrinsically subjective and associated with non-physical terms like consciousness and 
awareness, its brain-state representation is a part of physical world ruled by laws of neurophysics47. Akin to states 
of elementary particles in quantum physical laboratories, neurally encoded mental states can be both actual and 
potential, so that the former functions as a <<classical>> experimental apparatus actualizing one of potential 
futures of its <<quantum>> part according to the laws of quantum theory (Fig. 1).

In that way, QBism is consistent with methodology of quantum neuro-cognitive modeling described above, 
cf.116. In the spirit of QBism, our model explicitly describes cognition of a <<user who is trying to make sense 
of that world>>25,82,85,131–134. In particular, it provides top-level counterpart for neurophysiological methods of 
revealing and quantifying cognitive relations like fMRI adaptation135,136 that can be used in semantic studies of 
human cognition67,137–139.

Quantum phases and prediction power.  Understanding of the phase parameters is a hard question in 
quantum cognitive and behavioral modeling. Possible approach to this problem is suggested by neurophysiolog-
ical parallel of quantum cognitive modeling developed in “Results” section. According to this correspondence, 
quantum phases are phases of neural oscillation modes65,140–142, encoding cognitive distinctions represented by 
quantum qubit states as shown in Fig. 1, cf.143.

In cognitive perspective, complex-valued probability calculus of quantum modeling accounts for intrinsic 
subjectivity of semantics. While absolute values of perception-state amplitudes cij reflect objective coincidence 
rates Nij , phase factors φij cannot be extracted from the text data. These factors depend on the individual percep-
tion system thereby representing subjective aspect of human cognition that is overlooked in other paradigms 
of semantic modeling137,138.

Post-factum fitting of phase data presented above is in line with the basic practice of quantum cognitive 
modeling14,15. In the present case, it constitutes finding of what the perception state should be in order to agree 
with the expert’s document ranking in the best possible way. Detailed analysis of this mechanism is subject for 
future study. Upgrading quantum decision model from descriptive to predictive status is possible by supplying 
it with quantum phase regularities encoding semantic stability of cognitive patterns144,145.

Application to information retrieval.  Immediate application of the developed model  is information 
retrieval. Using subjective relevance judgment as observable for semantic connectivity can be seen as inverse of 
the basic objective of information retrieval science aiming to rank text documents according to the user’s needs. 
In this analogy, concepts A and B constitute a two-word search query, while semantic connection quantified by 
concurrence (10) calculated for each text document in the corpus is used to decide relevance the documents to 
the search query and to rank them in search result page.

In absence of other data, query << A B >> constitutes the only information about user’s interest available 
to the search engine. Internet search activity thereby realizes a distilled two-concept interaction hardly pos-
sible in human-to-human communication. In this situation, the two-concept perception model developed in 
“Two-concept perception” section is a model of the user’s cognition that a search engine provided with a query 
<< A B >> may build for a given text.
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Scaling of semantics: from the bag of words to the bag of sentences and further.  According 
to calculation of amplitudes described in “Results” section, cognitive model of the text (4) depends on its sen-
tence structure. In particular, random shuffle of words and periods leads to factorization of state (4) and zero 
concurrence which reflects elimination of semantic connection. At the same time, calculation of amplitudes is 
not affected by shuffle of both sentences within text and words within sentences, so that subsequent calculation 
of concurrence as measure of semantic connection is also invariant to these operations. The algorithm thereby 
treats text as a bag of sentences which may be paralleled with a bag of words level of text analysis146,147. This speci-
fies level of semantics that can be detected as entanglement between corresponding cognitive representations.

Sentence-level perception and semantic analysis described above can be scaled to paragraphs, chapters, 
whole texts, and even larger structures, addressing the problem of computational scalability95,148,149. For example, 
perception of the text as a bag of paragraphs can be accounted by exactly the same model that works with words 
and sentences. In that way, hierarchical semantic structure of information representation, typical to human 
cognition9,150, can be accessed.

Materials and methods

Probe documents and concepts.  Concepts A and B are taken to be concepts of natural language web-
site and promotion. Logic behind this choice is that both concepts are to have well-defined standalone 
meanings different from that of their combination, so that texts which are relevant to any single of two concepts 
are irrelevant to the compound query. The pair website and promotion meets this requirement since both 
texts on the main meaning of promotion as marketing activity and texts on the main meaning of website as Inter-
net entity are weakly relevant to one interested in website promotion. Experts were asked to estimate the degree 
of how much probe text answers the question <<What is website promotion?>> by integers from 0 (does not 
answer) to 10 (perfect answer). The probe documents are listed in Table 2.

Measurement of semantic observable.  When interested in text perception a subject may browse arti-
cles and books for existing results. By all likelihood, encyclopedia articles on text and perception alone will 
not be very helpful; what’s needed is a text which describes how the two entities relate to each other. In other 
words, satisfying interest in text perception amounts to establishing semantic connection between terms text 
and perception. Based on that we consider relevance of a given text to the compound two-word query 
<< A B >> estimated by subject as an observable factor quantifying of semantic connection between concepts 
A and B in this text. Namely, subjective relevance score ranging from 0 (minimal relevance) to 10 (maximal rel-
evance) is linearly mapped to the range (10) of concurrence measure of semantic connection.

Search engine as semantic estimator.  In accord with the previous paragraph, reliability of linear 
regression between expert’s estimation and Google ranking ( R2 = 0.79 and p-value of 10−5 . Similar results are 
observed for Yandex) supports the use of search engine as estimator of semantic relation. Namely, finding docu-
ment X higher than document Y in a search engine α result page in response to the query << A B >> implies 
that semantic connection between words A and B is stronger in document X than in document Y. This perfor-
mance of search engines reflects stable semantic patterns of their user’s cognition. Popular page ranking algo-
rithms thus have potential to substitute real subjects in experimental semantic research, cf. e.g.151.

Estimation of semantic relation by LSA cosine distance.  Cosine distance measure used as estima-
tor of semantic connection is produced from representation of target words in 12-dimensional latent semantic 
space constructed for each document152,153. Quantity shown in the right bottom panel of Fig. 3 is scalar product 
−1 ≤ wawb ≤ 1 of vectors representing query words A and B.
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